Sheep Breeding in Norway

Sheep Breeders Round Table 2015

Thor Blichfeldt Ron Lewis
Director of Breeding Professor,
University of Nebraska-Lincoln

The Norwegian Association of Sheep and Goat Breeders (NSG)
Outline

- Sheep production in Norway
- Breeds
- Sheep recording
- NSG – the sheep breeding company
- Traits, EBVs and total merit index
- Genetic gain
- R&D
- Genomics
- Key points about sheep breeding in Norway
Sheep production in Norway (1)

- Production per year
 - 24 million kg of meat
 - 4 million kg of wool

- Consumption
 - 5 kg per capita per year
 - Self sufficient
 - Some import
 - Tax protection

- Sheep farmer economy
 - Heavily subsidised - 2/3 of the income
 - Per animal
 - Per hectare
 - Good farmer prices
 - 4-5 £ per kg carcass weight
 - 3 £ per kg of wool
 - Norwegian costs - high (oil related)
 - Net income from sheep
 - Low, but improving
Sheep production in Norway (2)

- **Structure**
 - Farmers: 12 000
 - Ewes (1+ years): 700 000
 - Small flocks:
 - Average 55 ewes
 - Few 300+ ewes

- **Production very seasonal**
 - Indoor lambing April-May
 - Slaughter in August-November
 - Age 160 days
 - Carcass weight 20 kg

- **Housed during winter**
 - Before mating until 1-2 weeks after lambing

- **Intensive care during lambing time**
 - Assist the ewe
 - Assist the lamb
 - Colostrum
 - One lost lamb is one too many
Sheep production in Norway (3)

- Feeding

- Grass silage in the winter
- Spring pasture on farm
 - 2 - 6 weeks
 - Aprile – May – June
- Summer pasture in the woods or the mountains
 (mid June - mid Sept.)

Norway: 3% arable land
Photo: Grethe Ringdal
Sheep production in Norway (3)
- Feeding

- Grass silage in the winter
- Spring pasture on farm
 - 2 - 6 weeks
 - Aprile – May – June
- Summer pasture in the woods or the mountains (mid June - mid Sept.)

- Autumn pasture on farm
 - First group of lambs: Directly to the abattoir – September
 - Second group: October
 - Third group: November
 - The rest: Jan. - Feb.

- Concentrate
 - Ewes
 - Lambs
Breeds

- Norwegian Spælsau – 3 lines: 15 %
 - Most important: Flock instinct
 - Short tail (“spæl”)
 - Fleece: Dual coated wool, white - coloured
 - Polled - Horned

- Norwegian White Sheep (NWS): 75 %
 - Long tail
 - Fleece: Crossbred type, white
 - Polled

- 10-15 other breeds: 10 %
Norwegian Spælsau of today
Norwegian White Sheep
- definitely a composite

NWS: A population, not a proper breed
NWS:
- Sire line or maternal line?

- 90,000 ewes in 950 breeding flocks (2014)
 - Number of lambs born: 2.29
 - Age of slaughter, days: 156
 - Carcass weight, kg: 21.1
 - Carcass conformation: R+ (9.3)

- NWS is a dual purpose breed

- Used as “pure”
 - No appreciable crossbreeding in Norway
Animalia: The Norwegian Sheep Recording System

- Sheep Recording in Norway
 - Sheep producers: 30%
 - Ewes: 43%
 - Slaughtered lambs: 49%

- Central database
 - On farm data
 - Web / Mobile app
 - Abattoir data
 - File transfer

- Output
 - Management tool
 - Benchmarking
 - EBVs
 - R&D
Recording (2)

- Individually recorded
 - Electronic ear tags (EID)
- Birth info
 - Dam and Sire
 - Total born
 - Live born
 - Lambing ease (code)
- Weights of lambs
 - Birth
 - 6 weeks
 - 20 weeks (weaning)
- Disease
 - Mastitis

- Abattoir info
 - Carcass weight
 - EUROP conformation and fat score
 - Fleece weight and quality

- NOT DONE IN NORWAY
 - Ultrasound scanning for meat and fat
 - CT scanning
 - Fecal egg count
The breeding company:
- **NSG** and the Ram Circles (1)

- 80% of sheep farmers are members of NSG (10,000)
- NSG Breeding Council
 - 5 breeders
 - 2 from the abattoirs
 - 1 from the Agr. University
- Central office at Ås
- Breeding and AI is half of the activities in NSG
 - Director: Thor B.
 - 3 geneticists
 - 3 breeding consultants

- NSG budget for breeding: 1.3 mill. £
 - Gov. support: 45%
 - Levy on meat: 15%
 - AI sales: 40%
- Responsible for the breeding programme
- Calculating EBVs
 - 13 runs per year
- AI
- R&D
The breeding company:
- NSG and the Ram Circles (2)

- Ram circle: A small financially independent organization that has breeders as members
 - More than 50 years of good work
- Rams are owned by the ram circle and used among member flocks
- Ewes are owned by the members themselves
- Cooperating with NSG
 - Regulations
 - Guidelines
 - Financial support from NSG
 - 150 £ per test ram that qualifies
NWS breeding

- **The breeding population**
 - 150 ram circles
 - 950 members
 - 90,000 ewes

- **Progeny testing of rams**
 - Selection within ram circle
 - Test rams (0.5 y.): 1,800
 - Elite rams (1.5 y.): 300

- **AI**
 - Selection across ram circles
 - 20 rams (2.5 years)
 - 5 rams (3.5 years)

- **Elite matings**
 - 15% of ewes in ram circles are AI’d

- **Sired by an AI ram in ram circle flocks (2014)**
 - Lambs born: 9%
 - Lambs slaughtered: 5%
 - Ewes lambing: 21%

- **AI sires in ram selection**
 - Test rams sired by an AI ram: 85%

AI: The key to success
- Selection intensity of rams
- Connectedness among flocks
AI the Norwegian way
- 35,000 semen doses per year

- No synchronisation, no hormone treatment
- Oestrus detection 2-3 times per day
 - Walk the ram; Leach and apron
- Inseminate once 18-24 hours after onset of oestrus
 - Frozen semen – 240 mill. sperm cells
 - Vaginal deposition
 - Done by the farmer
- Non-return: 70%
- Cost: (Rent of shipper + freight + 20 doses)
 - Per semen dose: 23 £

“A shot in the dark”
Traits in the breeding work - heritabilities and weighting

<table>
<thead>
<tr>
<th>NKS</th>
<th>Heritability h^2</th>
<th>Weight in the total merit index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamb traits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth, carcass weight at 22 w.</td>
<td>0.12</td>
<td>24 %</td>
</tr>
<tr>
<td>EUROP conformation score, at 20 kg</td>
<td>0.19</td>
<td>18 %</td>
</tr>
<tr>
<td>EUROP fat score, at 20 kg</td>
<td>0.19</td>
<td>11 %</td>
</tr>
<tr>
<td>Fleece weight, at 20 kg</td>
<td>0.33</td>
<td>2 %</td>
</tr>
<tr>
<td>Fleece grade, at 20 kg</td>
<td>0.08</td>
<td>0 %</td>
</tr>
<tr>
<td>Ewe traits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternal ability, at 6 weeks</td>
<td>0.06</td>
<td>15 %</td>
</tr>
<tr>
<td>Maternal ability, at 22 weeks</td>
<td>0.05</td>
<td>24 %</td>
</tr>
<tr>
<td>Litter size, total born</td>
<td>0.13</td>
<td>6 %</td>
</tr>
</tbody>
</table>
The name of the game (1): Genetic gain – litter size

Number of lambs born

Increase in litter size

Birth year of lamb

Inger Anne presents a poster

Enough is enough!
The name of the game (2): Genetic gain – lamb growth

Goal: Slaughtered straight from the mountains

Jette and Thor presents a poster

Lamb carcass weight at 22 weeks

- Total genetic gain
- Direct
- Maternal

Change in carcass weight, kg

Birth year of lamb
The breeders: Have to do more recording!

- New traits?
 - Early lamb loss
 - Lambing ease (new scoring)
 - Lamb vigour
 - Suckling assistance
 - Udder and teat conformation
 - Mastitis
 - Longevity

- Improved models
 - Adjusting weights for age
 - Adjusting EUROP scoring for age or weight
 - Heterogeneous variances
 - Litter size: Reduce variability
 - Contemporary groups within flock-year

- Genomic information
Genomic selection

- The key equation

\[\frac{\Delta BV_X}{t} = \frac{r_{BV_X,P^*_X}(i_X)\sigma_{BV_X}}{L} \]

- Genomic tools may allow
 - Increased accuracy (\(\uparrow r_{BV_X,P^*_X} \))
 - Via “Genome-enhanced” EBV
 - Decreased generation interval (\(\downarrow L \))
Opportunities

- Facilitate improvement of otherwise difficult-to-measure traits \(r_{BV_X, P_X^*}; L \)
 - Traits expressed later in an animal’s life
 - Longevity
 - Traits expressed in only one sex
 - Fertility, litter size
 - Traits that are expensive and/or challenging to measure
 - Lamb survival, mastitis, maternal bonding, eating quality
Opportunities

- Facilitate improvement of otherwise difficult-to-measure traits \(r_{BV_X,P_X^*} ; L \)
- Form a better pedigree \(r_{BV_X,P_X^*} \)
Challenges

- Requirement is likely for large reference populations in individual breeds
 - “Large” to capture genetic diversity within a breed
 - “Within breeds” because genomic predictions do not extend well across breeds
 - In many industries, there are lots of breeds
- Validation (training) must be ongoing
 - Accuracies deteriorate as ancestors used to form genomic predictions become more distant

Structure of ram circles likely well suited to form industry-based reference populations
Challenges

- Requirement is likely for large reference populations in individual breeds

To keep “up-to-date”, need to measure about 12.5% new animals per year

(Goddard, 2009; Hayes et al., 2009; van der Werf et al., 2011)
Challenges

- Requirement is likely for large reference populations in individual breeds
- Costs of genotyping
 - Value per animal unit is relatively low in sheep
 - However, the per animal cost of genotyping is nearly the same across species
Benefits vs. costs

- The utility of genomic selection in the Norwegian industry will depend on
 - Gain in accuracy realized
 - Function of the number (diversity) of performance recorded sheep, e.g., 1/4 million Norwegian White ewes
 - Economic importance of traits being considered
 - Cost and thereby industry uptake of genotyping
Norwegian lamb finishing system

- Lambs grazed over-summer on mountain or forest pasture
- Once gathered, drafted on-farm
 - Over-weight & over-finished lambs marketed immediately
 - Target weight & finished lambs also marketed immediately
 - Under weight and/or under-finished lambs retained
 - Grass and/or concentrate fed until achieve a target end-point or end-of-season
Carcass weight by age (2014)
Norwegian lamb finishing system

- What then is the target end-point for adjustment for genetic evaluation?
 - Weight (20-25 kg)?
 - Age (20 weeks)?
 - Finish?
 - A combination of several?

- Given varying drafting strategies, how should contemporary groups be defined?
 - Will (and should) producers provide more delineating contemporary group designations?
Sheep breeding
- what is unique for Norway?

- **Centrally financed**
 - 1.3 million £

- **Recording**
 - One central database
 - Carcass data transfer

- **Large breeding population**
 - 90,000 ewes
 - 1,800 rams

- **AI**
 - The very best rams
 - Intensively used

- **Substantial genetic and phenotypic gain**

- **The sheep breeders**
 - A strong belief in the breeding theory
 - Confidence in the central breeding management
 - The same breeding goal for all breeders within a breed
 - Collaboration, not competition
 - Within ram circle
 - Across ram circles

Making results – together!
Invitation to
World Championship in Ewe Productivity

Norwegian contestant – Hove 2010-00003

<table>
<thead>
<tr>
<th>Year</th>
<th>Lambs</th>
<th>20 week weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>2</td>
<td>60 + 61</td>
</tr>
<tr>
<td>2012</td>
<td>4</td>
<td>62 + 67 + 64 + 61</td>
</tr>
<tr>
<td>2013</td>
<td>3</td>
<td>63 + 66 + 72</td>
</tr>
<tr>
<td>2014</td>
<td>3</td>
<td>61 + 59 + 60</td>
</tr>
<tr>
<td>2015</td>
<td>2</td>
<td>62 + 57</td>
</tr>
<tr>
<td>Sum</td>
<td>14</td>
<td>875 kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>175 kg per year</td>
</tr>
</tbody>
</table>

Concentrate given to the ewe, not the lambs: • 56 kg per year

Progeny for breeding:
- 6 daughters
- 2 AI rams